Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth
نویسندگان
چکیده
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.
منابع مشابه
The impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملThe combined effect of ultrasonic exposure and protein restriction on maternal and fetal mice.
This investigation was undertaken to assess the combined effects of protein restriction and ultrasonic energy exposure during pregnancy on the maternal and fetal mouse. Pregnant female mice were fed diets containing either 18% casein (control diet) or 6% casein (restricted protein diet) during gestation. All animals were subjected to the ultrasonic exposure procedure (actual: 2.5 W/cm2 spatial ...
متن کاملPlacental HSD2 Expression and Activity Is Unaffected by Maternal Protein Consumption or Gender in C57BL/6 Mice
The placenta acts as a physiological barrier, preventing the transfer of maternal glucocorticoids to the developing fetus. This is accomplished via the oxidation, and subsequent inactivation, of endogenous glucocorticoids by the 11- β hydroxysteroid dehydrogenase type 2 enzyme (HSD2). Maternal protein restriction during pregnancy has been shown to result in a decrease in placental HSD2 expressi...
متن کاملHow the maternal environment impacts fetal and placental development: implications for livestock production
Fetal survival is dependent upon proper placental growth and vascularity early in pregnancy. The ability for the fetus to reach its genetic growth potential is dependent upon the continual plasticity of placental function throughout gestation. Inadequate maternal environment has been documented to alter fetal organogenesis and growth, thus leading to improper postnatal growth and performance in...
متن کاملMaternal insulin-like growth factor binding protein-1, body mass index, and fetal growth.
AIM To examine the hypothesis that the maternal insulin-like growth factor system may constrain fetal growth. METHODS A prospective observational study of maternal serum insulin-like growth factor binding protein-1 (IGFBP-1) and fetal growth was undertaken in neonates with birthweights below the 5th centile. They had been classified either as having fetal growth restriction (FGR) due to place...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016